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THE LOCAL gOUNDEDNESS OF THE PERTURBED MOTIONS OF A GYROSCOPE IN GIMBALS 

WITH DISSIPATIVE AND ACCELERATING FORCES* 

S.A. BELIKOV 

The motion of an unbalanced gyroscope in gimbals in a central Newtonian 
field of forces is considered, taking the masses of the suspension rings 
into account. It is assumed that there is a moment of forces of viscous 
friction acting on the axis of rotation of one of the rings, and there 
is an accelerating (electromagnetic) moment applied to the axis of 
rotation axis of the other ring. The equations of motion have a partial 
solution such that the mean velocity of the outer ring is perpendicular 
to the direction from the centre of gravitation S to the stationary 
point 0, the middle plane of theinnerring contains this direction, and 
the gyroscope rotates about SO with an arbitrary constant angular 
velocity. 

The equations of perturbed motions of the system in the neighbourhood of the correspond- 
ing state of equilibrium are obtained to within terms of order three. The characteristic 
equation of the system is considered and the coefficients of the equation are found in the 
region i;O of admissible values of the parameters. The question of the distribution of eigen- 
values with respect to the imaginary axis is studied. A region in f, is constructed in 
which the pairs of complex conjugate eigenvalues have small real parts among which there are 
some positive ones, and the absolute values of the resonance mistuning between the imaginary 
parts are not small. In this region we obtain sufficient conditions for local uniform 
boundedness of perturbed motions of the gyroscope in gimbals with dissipative and accelerat- 
ing forces with respect to the partial solution mentioned above. These conditions are found 
in the form of constraints for the coefficients of the normal form and, eventually, for the 
original parameters of the system and the real and imaginary parts of the eigenvalues. To 
provide illustrative interpretation, some special cases are considered and the regions of 
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local uniform boundedness within flat regions of admissible values of the parameters are 
constructed using a computer. 

1. We shall consider the motion of a massive dynamically symmetrical gyroscope in 
gimbals in a Newtonian field of forces with centre S, taking into account the masses of the 
suspension rings. The axes of rotation of the outer ring (the frame)and the inner ring (the 
mantle) are perpendicular to one another, and so are the axes of the gyroscope (the rotor) 
and the inner ring. The directions in question intersect each other at the stationary point 
0 of the gyroscope. Each of the suspension rings rotates about one of its main axes of 
inertia. The gyroscope rotates about the axis of dynamical symmetry, which coincides with 
the main axis of inertia of the inner ring. Let there be a moment of forces of viscous 
friction acting on the axis of the outer (or the inner) ring, and let there be an electro- 
magnetic device on the axis of the inner (or the outer) ring which produces an accelerating 

moment ating in the same direction as the direction of rotation of the ring and proportional 

to the angular velocity of the ring c/l/, p.182). We assume that there is no moment of 
friction forces about the axis of rotation of the gyroscope or that it is cancelled byan 

electromagnetic moment applied to the rotor t/2/, p.85). Let the centre of mass of the 
outer ring lie on the stationary axis of rotation of the outer ring, which is perpendicular 
to SO, and let the centre of mass P of the system consisting of the inner ring and the 
gyroscope lie on the axis of symmetry of the rotor. 

We will introduce into the consideration two orthogonal right-handed coordinate systems, 

namely, the system. OXYZ attached to the stationary platform in such a way that the X-axis 
passes through the centre of gravitation S and the Z-axis is directed along the stationary 
axis of inertia of the outer ring, and the system %lC attached to the inner ring with 
axes parallel to the main axes of inertia of the inner ring, so that E and 5 are measured 
along the axes of rotation of the inner ring and the rotor, respectively. We will assume 
that initial state of the system is such that the middle planes of the suspension rings 

coincide and contain the direction SO. The current position of the system in question with 

respect to the stationary platform will be determined by the Euler angles up, fl and 'I, that 
is, the angles of rotation of the outer ring, the inner ring, and the rotor, respectively. 

The equations of motion of the gyroscope in gimbals with dissipative and accelerating 

forces acting on the axes of the suspension rings have the form 

Here p ~~ (P,P, PR, pdT are the generalized momenta corresponding to the coordinates q = ($. 
0. U)T, H is the Hamilton function, F is the matrix of Rayleigh functions F, A and C are 
the equatorial and polar moments of inertia of the gyroscope with respect to 0; A,, B, and 

CI are the main moments of inertia of the inner ring with respect to 0; A, is the moment 

of inertia of the outer ring with respect to the Z axis, M is the mass of the system con- 

sisting of the inner ring and the rotor, g is the acceleration due to gravity forces at the 

distance R from S to 03 50 is the 5 coordinate of the centre of mass P, k,, > 0 (or Ice > 0) 
is the coefficient of viscous friction acting on the axis of the outer ring (or the inner 

ring) and kg<0 (or ii,(O). Thus, I /ill I (or I& 1) is the steepness of the character- 
istic of the electromagnetic device on the axis of the inner (or the outer) ring producing 
the acceleration moment and k,ks < 0. 

Since the angle of rotation ~1 of the gyroscope does not appear explicitly in the 

Hamiltonian H and the forces acting around the axis of the gyroscope cancel each other, system 
(1.1) admits of the integral of motion Pm ~ const , and a reduced system with two degrees of 

freedom can be extracted from Eqs.tl.1). 

2. Eqs.cl.1) have the partial solution 

p,j. :m 0, pe = 0, pc 1 Cw’ (2.1) 
+ Jca, 0 = n/a, 'P o't + 'Fa 

in which case the middle plane of the outer ring is perpendicular to SO, the middle plane of 
the inner ring contains SO, and the gyroscope rotates with an arbitrary constant angular 
velocity o' about SO. 

We shall obtain the equations of perturbed motions of the reduced system in the vicinity 



of the state of equilibrium 

which corresponds to the stationary motions (2.1) of the original system (1.1). We set 
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(2.2) 

and we find the expansion of the Hamilton function of the reduced system in the vicinity of 
the state of equilibrium to within terms of order four with respect to the perturbations 
pm', qm' (m == 1, 2). We introduce the new dimensionless variables Pm* 4m7 the time 't, the 

angular velocity o, the coordinates k,,,, and the parameters a, a,, b,, cl, as, e, 6 defined by 

the formulae 

We obtain an expansion of the Hamiltonian of the reduced system in the form 

(2.4) 

where v1, . . ., v1 are non-negative integral numbers and lYI=\.j -. . . ..fY&. 
The following coefficients h,,,,,,,, of the forms H, and II; are non-zero: 

(2.5) 

e, = (a + b, j- az)-l. e2 -: (a -+ a,)-‘, h, = --e + 

36 (a - 1 + a, - cl), h, = -e + 36 (a - 1 + b, - c,) 

(2.6) 

The equations of perturbed motions of the reduced system in the vicinity of the state 
of equilibrium (2.2) expressed in terms of the dimensionless variables defined by (2.3) have 
the form 

&marks. 2.1. The dimensionless parameter 6 is small, since in the approximate dis- 
cussion of the central Newtonian field of forces /3/ it is assumed that the distance R is 
much greater than the dimensions of the gyroscope in gimbals. The limiting case corresponds 
to a uniform field of gravitational forces. 

2.2. For the stationary motions (2.1), if the centre of mass P lies closer to (further 
from) the centre of gravitation S than the stationary point 0, then we find that - - --1 
(c= 1, respectively). 

3. We introduce into consideration the following domain of admissible values of the 
parameters: F, = {e = (~7 k,, k,, a, 41, b,, cl, a,, 61: k, > 0, k,< 0 (or 
6, > e,v b, + ct > aI, cl -7 a, > b,, ft2 > il. and 

k, -z o, k, > O), a >lj2, a, + 
b is a snail positive number). 

The characteristic equation of system (2.7) has the form 

he -+ P&S + (Pa -f- Q,)P -7 P,E, i- Q& = 6 

Computing the coefficients of (3.1) in accordance with /4/, we get 

(5~ I) 
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Substituting (2.6) into (3.2), we get the final expressions for the coefficients of 
the characteristic polynomial in terms of c EF, and e = + 1. 

Suppose that Eq.(3.1) has two pairs of complex conjugate roots. It follows from the 
Vieta formulae that the condition Q4 > 0 is necessary under the assumption made above. The 
condition is satisfied according to the corresponding expression (3.2). Remarks 2.1 and the 
notation (2.6). If 

1) ~~ 11, (I', Q,) A’:, - Z’,‘QI - P,2 # 0 (:1.:1) 

then the real parts of the pairs of complex conjugate eigenvalues are non-zero. We consider 
the following domains: 

The number Q appearing in the definition of the above domains can be expressed in 

terms of the coefficients of the characteristic Eq.(3.1) by means of formula (3.3). Using 

the theorem on the distribution of the roots of polynomials in the half-planes Ileh(O and 
Reh>O /5/ applied to the case Qb > 0 under consideration, we arrive at the following 
results. 

Proposition. For all the roots of (3.1) and (3.2) to have negative real parts it is 
necessary and sufficient that c E N, (see /l/). The real parts of all eigenvalues are 
positive if and only if CEN&. If c E N,. then the characteristic equation has two roots 
in the half-plane Reh( 0 and two roots in the half-plane Reh>O. 

Remark. 3.1. From the above proposition, the definition of .\,,. _ir and .Yr, expression 
(3.2) for P, Remark 2.1, and notation (2.6) it follows that in general, for any CEF", the 
distribution of eigenvalues with respect to the imaginary axis changes if the change P I - 
e-- 1 occurs. 

4. Let r EiVo. Then the uniform rotations (2.1) of the gyroscope in gimbals are 
asymptotically stable /6/ with respect to the variables p>,. ~a, [I,,,?$, 0 under parametric 

perturbations of the construction parameters. 
Henceforth we shall assume that CE N4 b N,. Then the stationary motions (2.1) are 

unstable /6/. In addition, let all the roots of the characteristic Eq.(3.1), (3.2) have 
small real parts. For the real parts of the eigenvalues to be small it is necessary that I', 
and !', given by (3.2) be small, and it is sufficient that P, and Pi, be small and c E G. 

where 

It is obvious that G ;? iyq # I? and G 17 N, # 8. We denote the roots of (3.1) and 

(3.2) by na,:tip,(m _ 1, a), where PL>O is a small parameter, p,,,) 0, and where one of 

the numbers am is positive if e E _Yz and both of them are positive if CC X:(, To fix our 

ideas we shall assume that p,:> p2. 
We shall investigate the sufficient conditions for local boundedness /I, %/ of the sol- 

utions of the equations of perturbed motions (2.7) with respect to the origin PllL '/,,< 0 

(/n 1. 2) of the coordinate system for small P, and P, andc FZ G 17 (.\-i _, NJ*. We remark 

that to study the problem of the local boundedness of perturbed motions, it is necessary to 
consider Eqs.(2.7) with terms which are non-linear with respect to perturbations. The analysis 

below represents the case where one can neglect terms of order higher than three in (2.7). 

Remarks. 4.1.. The coefficient P, defined by (3.2) is small if (k, -- k21 is small (see 

Remark 2.1 and (2.6)). Then the coefficient P, defined by (3.2) is small provided 16, I fli 011 
is small (see (2.6)). Therefore, the assumption that the real parts of the eigenvalues of 
system (2.7) are small imposes the above restrictions on the construction parameters e c I',, 

of the gyroscope in gimbals. 
4.2. The cases where the pairs of complex conjugate eigenvalues have small real parts 

were referred to by Kamenkov /9/ as cases which are close to being critical. In these cases 

the notion of local uniform boundedness of the solutions of (2.7) corresponds to the notion 
of stability in the sense of Kamenkov /9, lO/ translated into a formal language. The notion 
of local boundedness is convenient because its definition involves the initial and current 
estimates 6 and P of the region appearing in the definition of stability in the sense of 

*For the solutions of an autonomous system of the form (2.7), the definition of local uniform 

boundedness used in /7, 8/ was stated in: S.A. Belikov, Local boundedness of solutions of an 

autonomous system of order four with small positive real parts of the eigenvalues, Leningrad 
Institute of Aviation Instruments, Leningrad, 1987. Deposited in VINITI 26.03.87, 2206-B87. 
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Kamenkov. 

5. TO obtain sufficient conditions for local boundedness, we carry 
formations of system (2.7), whose coefficients depend on the choice of c 
the construction of the transformations we define the hypersurfaces 

out certain trans- 
and e=_tl. In 

R, is the boundary of G. If CER,, then the absolute value of the resonance mistuning 

El.1 (c) = B1 (c) - P*(e) is small. Henceforth we shall exclude from consideration a small 
neighbourhood RzO of the surface R, such that (Vc E G\ R,“) I E,,~(c) I > 1/F 

Let c" (G\ R,O) n (N, L; IV,). The linear transformation z = sx, s = fp1. pn, 41, q*)T, s = 

II skz lltiw det S f 0, x = (21, -1‘2, ~8, zh) reduces the matrix B of the linearized system (2.7) to 
the real Jordan form. Let us write down the elements of S. We set 

r1 = k,e,pc, -?- 0%)' - f&" + $2, (5.1) 

i1 = k&J + 2nc,B, 

g, = I fJ1 ((rlz -I- i,‘) h, .-t ((pcQ2 _t p12)2 o*e,) j-“1 

Then 

The formulae for star sir& (k = 1, . . ., 4) can be found from the expression for sblr sh-3 )I 
respectively, by the change a,* u2 and pl--e& in (5.1) and (5.21. Substitution of 
(5.1) and (2.6) into (5.2) yields the final expressions for the elements of S in terms of 
c E (G\ R,O) fl (A', d N,) and a,,,, Pm (m = 1, 2). 

R+ and G have a non-empty intersection. If CE RI, then the absolute value of the 
resonance mistuning %,a (e) = B1 (e) - 38, (C) is small. We exclude from consideration a small 
neighbourhood RI0 of R,, such that (VC E G \ R,“) 1 F~,~ (c) I >brG. 

Let 

c E (G\ (Hz" Ll R')) fl (Np U A’,) (5.3) 
As a result of the normalization transformation x+y constructed with the use of a 

modified version of the Depri-Horikemel method, which is analogous to the Wersmann modifi- 
cation /lo/, and the introduction of the polar CoOrdinates 

y, = pm cos 6,, Y,+~ = pm sin 6, (m = 1, 2) 

the system of ordinary differential equations in x obtained from (2.7) by the change of 
variables z = Sx can be reduced to a normal form at n = () 

The equations determining p,,, becomes separated. 
which is continuous with respect 

to u. In the cases where the problem of 
local boundedness of the solutions of (2.7) with respect to the origin of the coordinate 

system can be solved by means of terms of order not greater than three independently of any 
forms of higher orders, there is no need to consider the equations determining 6,, since the 
problems of local boundedness in s, x, y, or 

We set pz = p,* + p2 
p,,, (m -2 1, 2) are equivalent. 

and we consider the variables pm along with 
Setting 

r,,, 
r c py, 

= pm% (n2 : 1, 2). 
we get r, + r, -7 I-. 

r and r,,,' 
Following Kamenkov 191, we introduce the new variables 

by the formulae r,, = rr,,,' (m .= 1.2). The equations which determine pm can be 
transformed to the form 

and have the integral r,' + i-*' = 1. The symbol (1, 2) means that the third equation in (5.4) 
can be obtained from the second equation by the transposition of indices 
ables rnr' 

I- 2. The vari- 
in (5.4) vary over the interval 1 = {(r,', r.*'): J.~' _;s 0, i-2’ I;, 0, r,’ -1. rg’ -= I}. The follow- 

ing notation is used in (5.4): 
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‘I ,)I, I,,? ‘1”l.o, (m 1. 2) are the coefficients of the continuous normal form in y. We shall 
write down the coefficients using the analytic arguments of /4/ (see also the article 

mentioned in the previous footnote). We set 

(5.6) 

Here c j l,,, are the elements of the inverse matrix 5-1 that is, ,< 1 = II S,,,, I/l. Jsi= I’. We 

get 
X(1 I 10 (1’11 6, G,:, + (,:+:s. %l.O, -- G,, ok 1 rt .7 ) 

G I G,:, -I- c,,,. 4&, 1” = G,, -;- G:,, + 
c,, G:,c. ‘%12,“, : G,, -t G/,, + G,, + G&& 

Taking into account the known algebraic relations for S,,,, (I = I. ., A. m ~= 1. 2. 3) and 
substituting (5.6), (5.2), (5.1), (2.5), and (2.6) into (5.7), we obtain the final expressions 
for the coefficients 'c,qm. (P,n.o, (Ill 1. 2) of the normal form in terms of the parameters c . . 
satisfying (5.3) and CL,,,. p,,, (HI I, 2). 

The following theorem on local uniform boundedness holds. 

Theorem. Suppose that 1 k, : k, / and j O1 T a2 - a1 1 are small, the parameters c satisfy 
(5.3), and e = 41. For such fixed c and let the coefficients I,! e = ;rl, 'Pm,ni, 'Fm.01 ( 
I. ?)given by (5.7) satisfy the following conditions: 1) if I+,,~,(P~,~,< 0 or ~~~~~~ < () and 
OP.10 < 0 then the inequalities VI,10 -c ” and ([:,,,, < 0. hold; 2) if (pnOl > (1 and v~,,~ ;. (I 

then 'F~,,~ ((1, Y,.,,~ < (1 , and qI, Io(Pv,l,~ ,,' VI,UI~Z,IU. Then the solutions of the equations of per- 
turbed motions (2.7) are locally uniformly bounded with respect to the origin I' ,// L. ‘, ,,, 0 

(m 2, 2) of coordinates. 
We will give an outline of the proof. The assumptions that / ic, I;, \ and 1 b, j a, - ~1~ 1 

are small and c ,F c :-- (Sk 6 ‘VZ) ensure that two pairs of complex conjugate eigenvalues 

exist with small real parts, among which there are some positive ones. We consider the 

system (5.4) with (5.5) obtained from the equations of perturbed motions (2.7) with CEG\ 

(n,” G A?,“). Let the coefficients (5.7) satisfy the restrictions imposed above. With the aid 

of the auxiliary Lyapunov type function proposed by Kamenkov /9/ it was shown /4/ (see also 
the article mentioned in the footnote) that under the conditions listed above the solutions 

of the normal form (5.4), (5.5) are locally uniformly bounded with respect to the equilibrium 
state I' 0. The expressions for the initial and current estimates q and p appearing in 
the definition of local uniform boundedness of the solutions of system (5.4), (5.5) with 

respect to the origin )‘ (1 are obtained in terms of the coefficients (5.7). The trans- 

formations of the variables of (2.7) which yield the normal form do not violate the property 

of local uniform boundedness. Consequently, the assertion of the theorem holds. 

Remarks. 5.1. The zero solution i',,% -II,,, O.(m ~~ I. ?) of the equations of perturbed 
motions (2.7) coincides with the state of equilibrium (2.2) of the reduced system. 

5.2. The assumptions of the theorem contain certain restrictions expressed as in- 
equalities for the coefficients (5.7) for the normal form. The expressions for the coefficients 

in terms of the parameters c satisfying (5.3), c +I , and %,ii,,,(~n 1.2) have been found 

above. It follows that the sufficient conditions for local uniform boundedness obtained in 
the theorem can be regarded as restrictions for the initial construction parameters of the 

gyroscope in gimbals. 
The theorem on the continuous dependence of the solutions of (1.1) on the parameters and 

the assumptions of the theorem stated above imply the following result. The perturbed motions 

of a gyroscope in gimbals with dissipative and accelerating forces acting on the axes of the 

suspension rings are locally uniformly bounded in P*, Pe’, Pq. 9. 0 with respect to the station- 

ary motions (2.1) under parametric perturbations of the construction parameters of the system. 

6. To provide an illustrative interpretation of the sufficient conditions for local 
uniform boundedness of the perturbed motions of a gyroscope in gimbals obtained above as 
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restrictions upon c and e = &i we consider the special cases where the values of all the 
par-meters except a and w are fixed. To fix the parameters, we take into account Remarks 
2.1 and 4.1. We set a, = 2. b, = 1, c, 1312, a2 = 1, and 6 = 10+. 

we define the following special cases to be considered: 

.% i" .>Y 35 40 ir' 6. 

;, 
-4. I -' 1 +I *I I --z 
i.000 --1.005 z.iicln --2.005 :i.000 --3.rJus 

x-2 -1.00~ 1.000 -2.005 2.ooo --3.@JJ J.U(i(i 

Theinequalities for the coefficients (5.7) appearing among the assumptions of the 
theorem were verified using a computer. The analysis was carried out for the intersections 
of the rectangle {a E II/a; 81) {w E 12; 241) and the first regions G corresponding to the cases 
listed above. 

For e:= 1, the computational results obtained in cases 3" and 4O are presented in 
Fig.1. In case 3' (4") the curves E,(E,) and R, are the boundaries of the domain L, (Le) 
of local uniform boundedness. Some small neighbourhoods of the curves Ei, and R, are excluded 
from L,&). Cases lo ahd 2' are qualitatively the same as those in Fig.1. In case 6* the 
results of computations are presented in Fig.2. In cases 3* and 4O with e = -1 and in 
case 5" we failed to establish the domain of local uniform boundedness. 

We mention that the initial and current estimates 4 and I_' of local uniform boundedness 
for the solutions of the normal form have been computed for a number of points in L,, L, and 
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